|
NewsInformation Center
Home>News > > EFFECT OF TEMPERATURE ON THE STRUCTURE AND FILTRATION PERFORMANCE OF POLYPROPYLE

EFFECT OF TEMPERATURE ON THE STRUCTURE AND FILTRATION PERFORMANCE OF POLYPROPYLE

2020/07/10

Share: 

Share
IntroductionEmerging  environmental  problems,  especially  ne  particle pollution (<2.5  mm, promulgated by the US Environmental Protection Agency) can cause great harm to human health such as to respiratory tract and extra pulmonary organs [1-4]. Currently, air  ltration  is one  of the  most  direct and  effective methods for resolving particulate pollutants, and the key is air ltration materials. There are many varieties of nonwoven lter materials, and the diversity of the production process makes it applicable to different elds [5]. Melt-blown nonwoven materials are widely used in air ltration because of their ne bers, large surface area, high porosity, and  good  ltration  characteristics [6-8].At  present,  the  research  on  how  to  improve  the  ltration performance of melt-blown nonwovens mainly focuses on two aspects. One is improved from the structure of nonwoven fabric [4, 9]. Deng et al. [3] successfully fabricated multi-scale micro/nanobers  membrane  by  one-step  melt-blown  technique. Soltani and Macosko [9] used the islands-in-the-sea approach to prepare  nanober  melt-blown  nonwovens.  However,  these methods have some shortcomings such as having large ltration  resistance  and increasing  energy consumption.  The other is combined with electret technology. Electret technology is  an  electric eld  poling  method that  via a  corona  charging system with adjustable electric eld provides charge to fabrics. Electret lters not only include the traditional dust trapping way (interception  effect,  inertance  effect,  diffusion  effect,  gravity effect) but also can absorb dust particles by electrostatic force (electrostatic effect) [10-12]. It has been broadly demonstrated that  electret  lter  material  with  electrostatic  charges  added on  bers  will  improve  particle  collection  efciency  without increasing the ltration resistance [13-15]. There are plenty of research for corona charging. Shu et al. [16] studied the electret technology  of  air  ltration  material  and  found  that  charging voltage, followed by charging speed and distance, are the main factors  to  affect the  ltration  efciency. Brochocka  et  al. [17] used polypropylene (PP) admixed  with  additives  with  varying electrostatic potentials, and the results proved that electrostatic forces  of  nonwovens  are  strengthened.  Chang  et  al.  [18] developed a two-layer charged composite lter and found that it had a high gure  of  merit  and  a  better  holding  capacity  for PM2.5 (particle size < 2.5 mm). However, few studies have been done on  combining  corona  charging with temperature.  Zhang et  al.  [19]  investigated  the  electromechanical performance  of cellular PP electrets charged at a high temperature (≥100°C). Ji et al. [20] studied the charge storage and its stability of corona-charged PP nonwoven  fabric  treated with a high temperature (≥90°C),  and  the  results  showed  that  charge  storage  and  its stability  were  improved.  However,  little  attention  was  paid to the  effect  of  electret  temperature  on  structure  and  ltration performance  of  PP  melt-blown  nonwovens.  According  to Zhong-Bao J’s research,  we  assumed  that  charged  at  a  high temperature (≥70°C), PP melt-blown nonwovens may increase their ltration efciency.Herein, in  this  report, we applied  the  method of simultaneous corona-temperature treatment, that is to say, applying external temperature  treatment  while  polarizing.  The  simultaneous corona-temperature  treatment  rst  activates  the  dipole  in the dielectric material at a high temperature (≥70°C). Under the  action  of  the  electric  eld  force, the  dipoles  are  aligned along  the  direction of  the  electric eld,  and  the  electric  eld is maintained until the dielectric material is cooled to a certain low temperature, so that  the  originally  activated  dipole  inside dielectric  material  is  frozen,  and  in  addition,  a  complicated charging phenomenon may occur between the electrode  and the  dielectric  material  under the  action of  an applied  electric eld. The electret  thus formed contains a space charge and a dipole charge [21].The  material  has  a  specic  melting  point,  and  it  requires  a certain amount of energy  to  accelerate  its  chemical  structure change and increase the quantity of formed dipole within the electrets. Considering the  integrity  of  the  fabric, we choose a temperature range  of  70–110°C. Therefore,  we chose corona charging  fabric  as  the  control  group;  the  other  groups were treated  with  the  simultaneous  corona  temperature.  Here  the effect of  electret  temperature (the temperature applied  during the electret process is called electret temperature) on structure and ltration performance was investigated. At this time, corona charging  fabric  was  charged  under  indoor  condition  without external temperature,  and  for  the  convenience  of  discussion, we  would  mark  the  electret  temperature  of  corona  charging fabric  as  room temperature.  The only  difference between  all samples was the difference in the electret temperature.
 
2. Materials and methods
2.1. MaterialsThe raw material used  was  modied  PP with  a  melt  index  of 1500 g/min. On the same bases of the melt-blown process and electret process  and changing electret  temperature, ten kinds of sample were fabricated. The melt-blown PP electret fabrics were  produced  using  the  melt-blown installation  in Zhejiang Zhaohui Filter Technology Co. Ltd. We chose corona charging fabric (room temperature) as the control group; the other groups were treated with the simultaneous corona temperatures of 70, 75, 80, 85, 90, 95, 100, 105, and 110°C. Indewlling time in the corona chamber was 5  seconds,  and  the  winding  speed  was 26 Hz.2.2. MethodsThe  electret  samples  were  formed  via  a  corona  charging system  with  the  adjustable  electric  eld  to provide  charge  to PP fabrics  [22].  When  corona  poling  was  performed  at  room temperature,  the  corona  system  was  not  heated.  For  the convenience of discussion, we recorded the room temperature as 20°C. Schematic diagram of the corona charging system is shown in Figure 1.The  surface  morphology  of  samples  was  observed  using  a scanning  electron  microscope  (JSM-5610LV,  Japan).  The ber diameters were calculated using the software Image J by measuring 100 bers using  the scanning  electron microscope (SEM) images.The  pore  structure  of  samples  was  investigated  using  a capillary ow  porometer (CFP-1100-AI, Porous Materials  Inc., USA) based on the bubble point test.
The thickness of  samples was investigated using digital fabric thickness  gauge  (YG(B)141D,  China)  according  to  the  test standard:  “GB  T  24218.2-2009  Textile  nonwoven  fabric  test method  Part  2  thickness  determination”.  Ten  measurements for each sample were carried out.The area density is the mass per unit area. The areal density of samples was calculated according to equation (1):
In  equation  (2),  M is  the  average  mass  of the  sample  (g),  ρ is the  density  of  raw  material  (g/cm3), and Vd is the absolute volume (true volume) of the ber in the fabric (cm3). In equation (3), l is the sample length (cm), S is the  sample width (cm), d is  the  thickness  (cm)  of  the  sample  measured  at  a  specied pressure, and Vd  is  the  bulk  volume  of  fabric  at  nominal thickness (cm3). In equation (4), C is the porosity of the fabric.Crystallization  performance  of  the  fabric  was  measured using X-ray diffractometer (ARL X'TRA,  Switzerland)  with  the scanning angle 5°–55° and the scanning speed 2°/min, and the crystallinity was calculated using the software Jade.
 
The ltration efciency and the pressure drop of the fabric were evaluated  using  a  custom-design  automatic lter  tester.  The measured fabric  area  was  100  cm2. The aerogel  was  sodium chloride  with  a  particle  size  of  0.3  mm, and the measured ltration  rate  was  5.33 cm/s  (ow rate  was  32  L/min).  Three measurements were taken for each sample.3. Results and discussions3.1. Fiber diameter of samplesFiber  diameter  is  one  of  the  basic  structural  parameters  of ber-based air lter materials, and it will directly affect the pore size,  porosity, and  pore  structure  of  the  materials, which  will affect the ltration efciency and air resistance of the materials [24]. The SEM image and the ber diameter distribution of the fabric charged at 20°C are respectively shown in Figures 2 and 3; we can nd that the ber is ne and the ber diameter in the range of 1–2 mm accounts for 75%.
It can  be  seen from Figure  2  that the bers  in  the melt-blown nonwoven  fabric  charged  at 20°C  are  disorderly arranged  to form a three-dimensional network structure. When the external temperature  is  applied  (Figure  4),  the surface  morphology  of fabrics  has  a  relatively  serious  phenomenon  of  melting  and agglomeration, and the pore of the three-dimensional structure is blocked, which in some extent destroys the surface structure of fabrics.
 
3. Results and discussions
3.1. Fiber diameter of samplesFiber  diameter  is  one  of  the  basic  structural  parameters  of ber-based air lter materials, and it will directly affect the pore size,  porosity, and  pore  structure  of  the  materials, which  will affect the ltration efciency and air resistance of the materials [24]. The SEM image and the ber diameter distribution of the fabric charged at 20°C are respectively shown in Figures 2 and 3; we can nd that the ber is ne and the ber diameter in the range of 1–2 mm accounts for 75%.
The average diameters are shown in Table 1. No visible change in the  ber  diameter  is found with the  increase  in  the electret temperature.  This  was  because  the  renement  of  the  ber mainly occurs near the nozzle of the die during the production of the melt-blown nonwoven fabric.
 
3.2. Pore size and distribution of samplesPark  et  al.  [25] studied  the effect  of  different  pore  sizes and pore size distribution on ber ltration performance. The results showed that air ltration  materials  with  smaller  pore  size  and uniform pore size distribution have better ltration efciency. As shown in Figure 5, more than 95% of the pore size was mainly concentrated between 3  mm and 14 mm  when  the  fabric  was charged at 20°C.Figure  6  displays  that  temperature  treatment  broadens  the range of  the  pore size distribution  of  the fabric from  3–14  mm to  3–17  mm. We  can see  that all  samples have  a  ner ber diameter  (Table 1).  Generally,  ner  bers  would  form  a  ner pore  size  and  more  uniform pore  size  distribution;  however, during the process of charging at  a high temperature (≥70°C), the  formed  melt-blown  nonwoven  fabric  was  heated  again and the ner bers were more easily melted; there were many molten beads  attached  to the ber (Figure  7),  resulting in the pore size becoming slightly larger.The mean pore diameters further conrmed the conclusion. All samples charged in the range of 70–110°C have a larger mean pore diameter than those charged at 20°C.
 
3.3. The thickness and areal weight of samplesAs shown in Table 3, as the electret temperature increased, the thickness rst increased and then decreased, but the variation was not large, between 0.2  and 0.24 mm.As  shown  in Figure  8,  the smallest  areal weight  of  samples charged at 20°C was 18.31 g/m2; the areal weight of samples charged  in  the  range  of  70–95°C  stayed  at  approximately 27  g/m2.  The  areal  weight  continued  to  increase  when  the temperature continued  to rise. When the  electret temperature was low  (at  70°C),  the  ber shrunk  by  heat,  the  width  of the fabric became narrow, and the thickness and the areal weight increased. As  the  temperature continued  to  rise  (>70°C),  the shrinking bers continued to melt and became uid adhering to the ber web, which became at after cooling (Figure 4), so the thickness decreased while the areal weight continued to rise.3.4. The porosity of samplesThe  porosity  of  the  ber  assembly  refers to  the  ratio  of  the pore diameter  inside  the  ber  lter  material  to  the  ber  body structure. The porosity of the fabric decreased with the increase in the electret temperature (Figure 9). The porosity at 20°C was the highest, reaching 89.94%; the porosity was relatively stable and stayed at approximately 87% when the electret temperature was in the range of 70–95°C. When the temperature continued to  rise,  the  porosity  dropped  signicantly. For  the  melt-blown lter  material,  under  the  premise of  a  certain  pore  size,  the porosity  will  affect  the  amount of  air  per  unit  time,  which  will affect its pressure drop [26].The change in porosity further conrmed the conclusion, which is also the  cause  of  variations  in  thickness  and  areal  density with the electret temperature. As shown in Figure 4, when the temperature  rises,  the shrinking  bers  continue  to  melt  and adhere to the ber web, which becomes solidied after cooling, and  the  hole  around  the melting  ber will  be blocked.  Thus, porosity decreased with increasing temperature.3.5. The crystallinity of samplesThe X-ray images of  samples  charged  at  20–75°C  and  100–110 °C  are  shown  in  Figures  10  and  11,  respectively.  The fabric  charged  at 20°C  exhibits  four diffraction  peaks,  which appeared close to diffraction peaks of the  110, 040,  130  and 041 crystal planes of the  PP a-crystals in the vicinity of 13.9°, 16.8°, 18.5°, and 22°, respectively [27], indicating the presence of the a-crystals; however, the weak intensity of the diffraction peak  indicated  that  the  a-crystals  were  less.  At  70°C, the signal of the diffraction peak became strong, but its peak was not sharp. Starting from 75°C, the diffraction peak of the fabric became sharp, indicating that the a-crystals of  the  ber  were growing. When the temperature was between 100° and 110°C, the diffraction peak became sharper and the a-crystals growth in the ber was perfect.The  X-ray  patterns of  samples are  shown  in Figure  12, and the corresponding crystallinity  is  given  on  the  right.  It  can  be observed that the lattice plane  (110) appears at around  14.2°. This  is  in  good  agreement with  the  a-crystals.  Therefore,  we speculate  that  the  bers  were predominately  crystallized  into a-crystals. The  crystallinity  is  20.56% for the sample charged at 20°C, while the crystallinity of the samples charged at 70, 75, 80, 85, 90, 95, 100,  and 110°C are 28.67%, 41.12%, 43.05%, 45.09%,  43.78%,  36.67%,  47.23%,  48.86%  and  51.48%, respectively. These  results indicate  that  electret temperature treatment can improve crystallinity.
 
3.6. Filtration performance3.6.1. Pressure dropAs  shown  in  Figure  13,  the  pressure  drop  at  20°C  was the  lowest.  With  the  increase  in  temperature,  the  ltration resistance stayed at approximately 38 Pa.From Figure 14, we can see that the trend of the ber diameter varying with the electret temperature is opposite to the tendency of ltration  resistance  changing  with the electret temperature, that is to say, the pressure drop increased (decreased) when  the  ber  diameter  decreased  (increased),  and  this phenomenon  corresponds  with  the  theory. We know  that  the areal density and porosity are two primary factors to affect the ltration resistance of melt-blown lter materials. The pressure drop would increase when the areal weight increased and the porosity decreased. From Figures 15 and 16, we can conclude that the increase in pressure drop is due to the increase in areal weight and the decrease in porosity.3.6.2. Filtration efciencyIn  Figure  17,  with the  increase in  temperature,  the  ltration efciency  uctuated  up  and  down;  the  ltration  efciency kept  above  96%  when  the  temperature  was  in  the range  of 20–105°C  and  dropped  signicantly  when  the  temperature continued to rise.In Figure  18, we can clearly  see the change  in  ber diameter and  ltration  efciency  with  the  electret  temperature.  The ltration  efciency  increased  (decreased)  when  the  ber diameter decreased  (increased), which also  corresponds with the theory. In general, the ltration efciency will decrease with the  decrease  in  thickness  and surface  density.  In  the  range of  20–105°C,  Figure 19  presents that  the  trend of  thickness and ltration efciency  almost  keeps  consistent,  except  at  80 and 100°C, in which the thickness  decreased but the ltration increased.  Figure  20  displays  that  the  trend  of  areal weight and  ltration  efciency  almost  keeps  consistent,  except  at 80°C. Combined  with  Figure 21, we nd  that at 20–85°C, the crystallinity increased, and the ltration efciency uctuated up and down. However, as shown in Table 4, we can nd that the difference in ltration efciency between the four samples (70, 75, 80, and  85°C)  is  very small. We can  roughly  think  that at 20–85°C, the ltration efciency increased with the increase in crystallinity. At 85–95°C,  the  areal  weight  remained relatively stable,  the  thickness  decreased,  the  crystallinity  decreased, and the ltration efciency decreased. At 95–105°C, the areal weight remained relatively stable and the thickness decreased, but  the  crystallinity  increased  and  the  ltration  efciency increased.  On  this  basis, we  can conclude  that in  the range of  20~–105°C,  the  change  in  the  ltration  efciency  has  a relationship with the change in the crystal structure caused by the electret temperature.
 
3.6.3. Quality factorFiltration  efciency  and  pressure  drop  are  a  pair  of contradictions,  so  evaluating the  ltration  performance of  air ltration  materials  requires  comprehensive  consideration  of ltration efciency and  ltration resistance. Quality factor (QF) is a  balance indicator for  evaluating  the ltration performance of materials. The specic calculation formula is as follows [28]:
In equation (5), h is  the  ltration  efciency  (%)  and Δp is the pressure drop (Pa).
 
It  can  be known  from the  above  formula that  the higher  the ltration efciency of the lter material or the lower the ltration resistance, the larger the QF value; the lower the efciency or the greater  the  resistance,  the  smaller the QF value.  In  other words, the greater the QF, the better the ltration performance [29-32].
The  QF  varies  with  the  electret  temperature  as  shown  in Figure 22. We can see that the QF generally tends to decrease with  the  increase  in  the  electret  temperature  in  the  case  of comprehensive consideration of ltration efciency and ltration resistance. The QF  of  fabric  charged  at  room temperature  is the  highest,  the  corresponding  ltration  efciency  is 96.17% and the pressure drop  is  27.7  Pa.  In  the  samples  charged  at 70°C–110°C, the  QF of  the sample  treated at  80°C  was  the largest, the corresponding ltration efciency was 98.35%, and the ltration resistance was 38.7 Pa. We nd that the ltration performance  of  fabric  charged  at room  temperature was  the best in all samples.
 
4. Conclusions
The  results  of  research  on  the  inuences  of  electret temperature on the structure of melt-blown PP fabrics exhibited that the  electret  temperature has no signicant  effect on ber diameter, but the range of pore size distribution was broadened and  the  mean  pore  diameter  was  slightly  larger.  With  the electret  temperature  raised,  the  porosity  decreased  while the  areal  weight  increased, and  the  thickness  rst  increased then decreased, but  the  variation  was  not  large.  The  electret temperature  could  increase  the  diffraction  peak  signal  of samples, promote the growth of the alpha crystal, and improve the crystallinity of fabrics.The results of research on the effect of electret temperature on the ltration performance of melt-blown PP fabrics indicated that the pressure drop raised and kept relatively stable because of the decrease in porosity and the increase in areal weight, and the ltration efciency increased (decreased) with the increase (decrease)  in  crystallinity when  charged  in the  range of  70–105°C.  Based  on  a  combined  consideration  of  air  ltration efciency and pressure  drop, the QF of melt-blown nonwoven fabric treated  at the room  temperature is the  highest, and the ltration performance is the best.
 

Previous: Methods For The Evaluation Of Abraded Fabrics
 N e x t   : Mask Filter Efficiency test of Materials and methods